Mudanças entre as edições de "Andriusl:webquest1"
De WikiLICC
Linha 8: | Linha 8: | ||
# Somamos <math>a</math> com <math>b</math> e dividimos por <math>2</math>, obtendo <math>c</math>. Assim, <math>c =\frac{12+13,33}{2} ⇒ c=\frac{25,33}{2}⇒ c = 12,665</math>. | # Somamos <math>a</math> com <math>b</math> e dividimos por <math>2</math>, obtendo <math>c</math>. Assim, <math>c =\frac{12+13,33}{2} ⇒ c=\frac{25,33}{2}⇒ c = 12,665</math>. | ||
# Agora dividimos o número original por <math>c</math>, obtendo <math>d</math>. Logo, <math>d = \frac{160}{12,665} ⇒ d=12,633</math>. | # Agora dividimos o número original por <math>c</math>, obtendo <math>d</math>. Logo, <math>d = \frac{160}{12,665} ⇒ d=12,633</math>. | ||
− | # Então, somamos c | + | # Então, somamos <math>c</math> com <math>d</math> e dividimos por <math>2</math>, obtendo <math>e</math>. Assim, <math>e = \frac{12,665+12,633}{2} ⇒ d=12,649</math>. |
# Dividimos o número original por e, obtendo f. Logo, e=160/12,649⇒e=12,649 | # Dividimos o número original por e, obtendo f. Logo, e=160/12,649⇒e=12,649 | ||
=Resultado= | =Resultado= | ||
Então, podemos concluir que 12,64 é aproximadamente a raiz quadrada de 160, com 2 casas decimais de precisão. Além do solicitado, ainda podemos ver que, 12,649 é aproximadamente a raiz quadrada de 160, com 3 casas decimais de precisão. Se continuarmos, encontraremos a aproximação da raiz de 160 aumentando a precisão a cada iteração. | Então, podemos concluir que 12,64 é aproximadamente a raiz quadrada de 160, com 2 casas decimais de precisão. Além do solicitado, ainda podemos ver que, 12,649 é aproximadamente a raiz quadrada de 160, com 3 casas decimais de precisão. Se continuarmos, encontraremos a aproximação da raiz de 160 aumentando a precisão a cada iteração. |
Edição das 00h39min de 9 de abril de 2016
Introdução
Utilizando o método babilônico para encontrar a raiz aproximada de 160 com dois dígitos corretos após a vírgula:
Procedimento
- Identificamos o menor quadrado perfeito que mais se aproxima do número escolhido. Para <math>160</math>, temos <math>12^2=144</math>, pois o próximo é <math>13^2=169</math>, que apesar de ser mais próximo de <math>160</math>, é maior.
- Extraímos a raiz quadrada deste menor quadrado perfeito mais próximo, <math>\sqrt{144} = 12</math>, então tomamos <math>a=12</math>.
- Dividimos o número original por <math>a</math>, obtendo <math>b</math>. Logo, <math>b =\frac{160}{12} ⇒ b = 13,33</math>
- Somamos <math>a</math> com <math>b</math> e dividimos por <math>2</math>, obtendo <math>c</math>. Assim, <math>c =\frac{12+13,33}{2} ⇒ c=\frac{25,33}{2}⇒ c = 12,665</math>.
- Agora dividimos o número original por <math>c</math>, obtendo <math>d</math>. Logo, <math>d = \frac{160}{12,665} ⇒ d=12,633</math>.
- Então, somamos <math>c</math> com <math>d</math> e dividimos por <math>2</math>, obtendo <math>e</math>. Assim, <math>e = \frac{12,665+12,633}{2} ⇒ d=12,649</math>.
- Dividimos o número original por e, obtendo f. Logo, e=160/12,649⇒e=12,649
Resultado
Então, podemos concluir que 12,64 é aproximadamente a raiz quadrada de 160, com 2 casas decimais de precisão. Além do solicitado, ainda podemos ver que, 12,649 é aproximadamente a raiz quadrada de 160, com 3 casas decimais de precisão. Se continuarmos, encontraremos a aproximação da raiz de 160 aumentando a precisão a cada iteração.