Mudanças entre as edições de "Navier-Stokes"

De WikiLICC
Ir para: navegação, pesquisa
m
m (Equação do movimento)
Linha 4: Linha 4:
  
 
<math>
 
<math>
   \sigma = -p I + 2 \mu d
+
   \frac{d}{dt} \int_{\Omega(t)} \rho \vec{v} dV = \int_{\partial\Omega(t)} \vec{t} dS + \int_{\Omega(t)} \rho \vec{f} dV
 
</math>
 
</math>
  
Linha 12: Linha 12:
 
   \rho \frac{D\vec{u}}{Dt} = \nabla \cdot \sigma + \rho \vec{f}
 
   \rho \frac{D\vec{u}}{Dt} = \nabla \cdot \sigma + \rho \vec{f}
 
</math>
 
</math>
 
  
 
==Equações de Navier-Stokes==
 
==Equações de Navier-Stokes==

Edição das 23h02min de 1 de julho de 2009

Equação do movimento

Utilizando o teorema do transporte, conservação da massa, princípio de Cauchy e teorema da divergência, a equação

<math>

  \frac{d}{dt} \int_{\Omega(t)} \rho \vec{v} dV = \int_{\partial\Omega(t)} \vec{t} dS + \int_{\Omega(t)} \rho \vec{f} dV

</math>

fornece a equação do movimento

<math>

  \rho \frac{D\vec{u}}{Dt} = \nabla \cdot \sigma + \rho \vec{f}

</math>

Equações de Navier-Stokes

Utilizando a relação constitutiva

<math>

  \sigma = -p I + 2 \mu d

</math>

obtém-se

<math>

  \rho \frac{D\vec{u}}{Dt} = -\nabla p + \nabla\cdot \{\mu[\nabla \vec{u}+(\nabla \vec{u})^T]\} + \rho \vec{f}

</math>

Com viscosidade constante

<math>

  \rho \frac{D\vec{u}}{Dt} = -\nabla p + \mu \Delta \vec{u} + \rho \vec{f}

</math>

ou

<math> \begin{align}

  \vec{u}_t + (\vec{u} \cdot \nabla) \vec{u} &= -\nabla p +\displaystyle\frac{1}{Re}\nabla^2 \vec{u} \\
  \nabla \cdot u                             &= 0

\end{align} </math>

onde <math>\vec{u}</math> é a velocidade e p é a pressão.

Onde o número de Reynolds é

<math> Re=\frac{\rho U L}{\mu} = \frac{U L}{\nu}\;\!</math>

Equação de Euler

Negligenciando os termos fontes, se <math>Re</math> tende a infinito obtemos

<math> \frac{D\vec{u}}{Dt} = -\nabla p </math>

e se <math>Re</math> tende a 0 (e multiplicando por <math>Re</math>) obtemos a equação de Stokes

<math> \frac{d\vec{u}}{dt} = -\nabla p + \Delta \vec{u} </math>

Convecção Térmica

Usando aproximação de Boussinesq e a equação de estado

<math>

  \rho = \rho_0 [1-\alpha(T-T_0)]

</math>

onde <math>\alpha</math> é o coeficiente de expansão volumétrica e <math>\rho_0=\rho(T_0)</math> e <math>T_0</math> uma temperatura de referência.

obtemos a equação de Boussinesq,

<math> \begin{align}

  \rho_0 \frac{D\vec{u}}{Dt} &= -\nabla p + \mu \Delta \vec{u} + \rho_0 [1-\alpha(T-T_0)] \\
 \rho_0 c\frac{DT}{Dt}       &= \nabla\cdot(k \nabla T) + \rho_0 r + \Phi \\
  \nabla \cdot u    &= 0

\end{align} </math>

onde <math>\rho_0 r</math> é o termo fonte volumétrico (que as vezes é descartado).

Adimensionalizando

Definindo

<math> \vec{x}':=\vec{x}/L\;\!</math>

<math> \vec{u}':=\vec{u}/U\;\!</math>

<math> t'  :=tU/L\;\!</math>

<math> p'  :=(p-\rho_0 \vec{g} \cdot\vec{x})/(\rho_0U^2)\;\!</math>

<math> T':=(T-T_0)/(T_1-T_0)\;\!</math>


Números adimensionais

Número de Richardson

<math> Ri := \alpha g \delta T L / U^2\;\!</math>

Número de Péclet

<math> Pe:=UL / \kappa \;\!</math>

Número de Brinkman

<math> Br := \mu U^2 / (k \delta T) \;\!</math>


obtendo a equação adimensional

<math> \begin{align}

  \frac{D\vec{u}}{Dt} &= -\nabla p + Re^{-1} \Delta \vec{u} -Ri \vec{g}/||\vec{g}||T \\
  \frac{DT}{Dt}       &=             Pe^{-1}(\Delta T + Br \Phi) \\
  \nabla \cdot u    &= 0

\end{align} </math>

Mudança de variáveis primitivas

colocar a mudança