Mudanças entre as edições de "Usuário:Patricial"

De WikiLICC
Ir para: navegação, pesquisa
(CALCULANDO A RAIZ QUADRADA UTILIZANDO O MÉTODO BABILÔNIO)
Linha 72: Linha 72:
  
 
Portanto, através do Método obtemos o valor da <math>\sqrt 63</math> com pelo menos duas casa decimais de aproximação após a vírgula.
 
Portanto, através do Método obtemos o valor da <math>\sqrt 63</math> com pelo menos duas casa decimais de aproximação após a vírgula.
 +
 +
 +
== Ligações externas ==
 +
*[[Wikipedia:FAQ de edição|FAQ de edição]]
 +
*[[Wikipedia:Como contribuir para a Wikipedia|Como contribuir para a Wikipédia]], sobre o que escrever e como.
 +
* http://pt.wikipedia.org/wiki/Ajuda:Guia_de_edição/Formatação

Edição das 03h24min de 11 de abril de 2016

Webquest1

CALCULANDO A RAIZ QUADRADA UTILIZANDO O MÉTODO BABILÔNIO

Calculando a Raiz Quadrada de um número N não nulo, sendo <math>N\in\mathbb N</math> tal que <math>9>N>99</math>

Adotaremos um valor qualquer em particular <math>N=63</math>

Logo, gostaríamos de encontrar <math>\sqrt 63</math> utilizando o Método Babilônio.

Primeira Aproximação (n1)

Tomamos um número n1, de modo que o seu quadrado se aproxime do valor de N por falta.

Temos que,

6² = 36

7² = 49

8² = 64

Escolheremos o valor de 49 pois, apesar de 64 ser mais próximo de 63 devemos adotar o valor menor que 63.

Então,

n1 = 7

Segunda Aproximação (n2)

Partindo de N e n1 encontraremos m1 que contribuirá para calcularmos n2.

Onde,


<math>m_1= \frac{N}{n_1}</math> → <math>m_1= \frac{63}{7}</math> → <math>m_1 = 9</math>

assim, determinaremos n2 através da Média Aritmética entre n1 e m1.

<math>n_2= \frac{n_1+m_1}{2}</math> → <math>n_2= \frac{7+9}{2}</math> → <math>n_2= 8</math>

Terceira Aproximação (n3)

A partir de N e n2, encontraremos m2.

Onde,

<math>m_2= \frac{N}{n_2}</math> → <math>m_2= \frac{63}{8}</math> → <math>m_2 = 7,875</math>

Logo, encontraremos n3 por meio da Média Aritmética entre n2 e m2.

Temos,

<math>n_3= \frac{n_2+m_2}{2}</math> → <math>n_3= \frac{8+7,875}{2}</math> → <math>n_3= 7,9375</math>

Quarta Aproximação (n4)

Por meio de N e n3, determinaremos m3.

<math>m_3= \frac{N}{n_3}</math> → <math>m_3= \frac{63}{7,9375}</math> → <math>m_3 = 7,937007874</math>

Pela Média Aritmética entre n3 e m3 encontraremos n4

<math>n_4= \frac{n_3+m_3}{2}</math> → <math>n_4= \frac{7,9375+7,937007874}{2}</math> → <math>n_4= 7,937253937</math>

Como podemos notar comparando o valor encontrado pelo Método Babilônio com a calculadora para a <math>\sqrt 63</math>

temos,

Método Babilônio <math>\sqrt 63 \approx 7,937253937</math>

Calculadora <math>\sqrt 63 = 7,937253933</math>

Portanto, através do Método obtemos o valor da <math>\sqrt 63</math> com pelo menos duas casa decimais de aproximação após a vírgula.


Ligações externas