Mudanças entre as edições de "Usuário:Manoel"

De WikiLICC
Ir para: navegação, pesquisa
(Problema da Cavidade)
(Problema da Cavidade)
Linha 12: Linha 12:
 
de Navier Stokes são equações diferenciais que descrevem o movimento de fluidos. Como por exemplo:
 
de Navier Stokes são equações diferenciais que descrevem o movimento de fluidos. Como por exemplo:
 
  <math>  
 
  <math>  
\begin{description}
+
%\begin{description}
\item [(a)] $\vec{u}_t + (\vec{u}\cdot \vec {\nabla})\cdot \vec{u}=-\nablap + (\frac{1}{Re})\cdot {\nabla}^2\vec{u}$
+
$\vec{u}_t + (\vec{u}\cdot \vec {\nabla})\cdot \vec{u}=-\nablap + (\frac{1}{Re})\cdot {\nabla}^2\vec{u}$
\item [(b)] $\vec{\nabla}\vec{u}=0$
+
$\vec{\nabla}\vec{u}=0$
\end{description}
+
%\end{description}
 
</math>
 
</math>

Edição das 15h46min de 18 de maio de 2009

Página Wiki do Manoel.

Testar quando n=3?

Olhar (inv(Q)*S' )?

Problema da Cavidade

Para visualizarmos este problema podemos imaginar uma piscina cheia de água e um vento soprando sobre sua borda, o estudo fica em analizar o movimento da água dentro da piscina. A maioria das simulações numéricas envolvendo problemas da cavidade utilizam as equações de Navier Stoques. As equações de Navier Stokes são equações diferenciais que descrevem o movimento de fluidos. Como por exemplo:

<math> 

%\begin{description}

$\vec{u}_t + (\vec{u}\cdot \vec {\nabla})\cdot \vec{u}=-\nablap + (\frac{1}{Re})\cdot {\nabla}^2\vec{u}$
$\vec{\nabla}\vec{u}=0$

%\end{description} </math>